Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Journal of Periodontal & Implant Science ; : 287-298, 2019.
Article in English | WPRIM | ID: wpr-766118

ABSTRACT

PURPOSE: The aim of this retrospective study was to determine the prevalence of early implant failure using a single implant system and to identify the factors contributing to early implant failure. METHODS: Patients who received implant treatment with a single implant system (Luna®, Shinhung, Seoul, Korea) at Dankook University Dental Hospital from 2015 to 2017 were enrolled. The following data were collected for analysis: sex and age of the patient, seniority of the surgeon, diameter and length of the implant, position in the dental arch, access approach for sinus-floor elevation, and type of guided bone regeneration (GBR) procedure. The effect of each predictor was evaluated using the crude hazard ratio and the adjusted hazard ratio (aHR) in univariate and multivariate Cox regression analyses, respectively. RESULTS: This study analyzed 1,031 implants in 409 patients, who comprised 169 females and 240 males with a median age of 54 years (interquartile range [IQR], 47–61 years) and were followed up for a median of 7.2 months (IQR, 5.6–9.9 months) after implant placement. Thirty-five implants were removed prior to final prosthesis delivery, and the cumulative survival rate in the early phase at the implant level was 95.6%. Multivariate regression analysis revealed that seniority of the surgeon (residents: aHR=2.86; 95% confidence interval [CI], 1.37–5.94) and the jaw in which the implant was placed (mandible: aHR=2.31; 95% CI, 1.12–4.76) exerted statistically significant effects on early implant failure after adjusting for sex, age, dimensions of the implant, and type of GBR procedure (preoperative and/or simultaneous) (P<0.05). CONCLUSIONS: Prospective studies are warranted to further elucidate the factors contributing to early implant failure. In the meantime, surgeons should receive appropriate training and carefully select the bone bed in order to minimize the risk of early implant failure.


Subject(s)
Female , Humans , Male , Bone Regeneration , Dental Arch , Dental Implants , Jaw , Osseointegration , Prevalence , Prospective Studies , Prostheses and Implants , Retrospective Studies , Risk Factors , Seoul , Surgeons , Surgical Procedures, Operative , Survival Rate
2.
International Journal of Oral Science ; (4): 20-20, 2018.
Article in English | WPRIM | ID: wpr-772297

ABSTRACT

Guided bone regeneration (GBR) often utilizes a combination of autologous bone grafts, deproteinized bovine bone mineral (DBBM), and collagen membranes. DBBM and collagen membranes pre-coated with bone-conditioned medium (BCM) extracted from locally harvested autologous bone chips have shown great regenerative potential in GBR. However, the underlying molecular mechanism remains largely unknown. Here, we investigated the composition of BCM and its activity on the osteogenic potential of mesenchymal stromal cells. We detected a fast and significant (P < 0.001) release of transforming growth factor-β1 (TGF-β1) from autologous bone within 10 min versus a delayed bone morphogenetic protein-2 (BMP-2) release from 40 min onwards. BCMs harvested within short time periods (10, 20, or 40 min), corresponding to the time of a typical surgical procedure, significantly increased the proliferative activity and collagen matrix production of BCM-treated cells. Long-term (1, 3, or 6 days)-extracted BCMs promoted the later stages of osteoblast differentiation and maturation. Short-term-extracted BCMs, in which TGF-β1 but no BMP-2 was detected, reduced the expression of the late differentiation marker osteocalcin. However, when both growth factors were present simultaneously in the BCM, no inhibitory effects on osteoblast differentiation were observed, suggesting a synergistic TGF-β1/BMP-2 activity. Consequently, in cells that were co-stimulated with recombinant TGF-β1 and BMP-2, we showed a significant stimulatory and dose-dependent effect of TGF-β1 on BMP-2-induced osteoblast differentiation due to prolonged BMP signaling and reduced expression of the BMP-2 antagonist noggin. Altogether, our data provide new insights into the molecular mechanisms underlying the favorable outcome from GBR procedures using BCM, derived from autologous bone grafts.


Subject(s)
Humans , Biomarkers , Metabolism , Bone Morphogenetic Protein 2 , Metabolism , Cell Adhesion , Cell Differentiation , Cell Movement , Cell Proliferation , Culture Media, Conditioned , Pharmacology , Guided Tissue Regeneration, Periodontal , Methods , Mesenchymal Stem Cells , Metabolism , Osteoblasts , Metabolism , Osteogenesis , Transforming Growth Factor beta1 , Metabolism
3.
The Journal of Advanced Prosthodontics ; : 160-165, 2015.
Article in English | WPRIM | ID: wpr-144368

ABSTRACT

PURPOSE: In this study, a temporal abutment fixation screw, designed to fracture in a controlled way upon application of an occlusal force sufficient to produce critical micromotion was developed. The purpose of the screw was to protect the osseointegration of immediate loaded single implants. MATERIALS AND METHODS: Seven different screw prototypes were examined by fixing titanium abutments to 112 Mozo-Grau external hexagon implants (MG Osseous(R); Mozo-Grau, S.A., Valladolid, Spain). Fracture strength was tested at 30degrees in two subgroups per screw: one under dynamic loading and the other without prior dynamic loading. Dynamic loading was performed in a single-axis chewing simulator using 150,000 load cycles at 50 N. After normal distribution of obtained data was verified by Kolmogorov-Smirnov test, fracture resistance between samples submitted and not submitted to dynamic loading was compared by the use of Student's t-test. Comparison of fracture resistance among different screw designs was performed by the use of one-way analysis of variance. Confidence interval was set at 95%. RESULTS: Fractures occurred in all screws, allowing easy retrieval. Screw Prototypes 2, 5 and 6 failed during dynamic loading and exhibited statistically significant differences from the other prototypes. CONCLUSION: Prototypes 2, 5 and 6 may offer a useful protective mechanism during occlusal overload in immediate loaded implants.


Subject(s)
Bite Force , Dental Implants, Single-Tooth , Immediate Dental Implant Loading , Mastication , Osseointegration , Titanium
4.
The Journal of Advanced Prosthodontics ; : 160-165, 2015.
Article in English | WPRIM | ID: wpr-144361

ABSTRACT

PURPOSE: In this study, a temporal abutment fixation screw, designed to fracture in a controlled way upon application of an occlusal force sufficient to produce critical micromotion was developed. The purpose of the screw was to protect the osseointegration of immediate loaded single implants. MATERIALS AND METHODS: Seven different screw prototypes were examined by fixing titanium abutments to 112 Mozo-Grau external hexagon implants (MG Osseous(R); Mozo-Grau, S.A., Valladolid, Spain). Fracture strength was tested at 30degrees in two subgroups per screw: one under dynamic loading and the other without prior dynamic loading. Dynamic loading was performed in a single-axis chewing simulator using 150,000 load cycles at 50 N. After normal distribution of obtained data was verified by Kolmogorov-Smirnov test, fracture resistance between samples submitted and not submitted to dynamic loading was compared by the use of Student's t-test. Comparison of fracture resistance among different screw designs was performed by the use of one-way analysis of variance. Confidence interval was set at 95%. RESULTS: Fractures occurred in all screws, allowing easy retrieval. Screw Prototypes 2, 5 and 6 failed during dynamic loading and exhibited statistically significant differences from the other prototypes. CONCLUSION: Prototypes 2, 5 and 6 may offer a useful protective mechanism during occlusal overload in immediate loaded implants.


Subject(s)
Bite Force , Dental Implants, Single-Tooth , Immediate Dental Implant Loading , Mastication , Osseointegration , Titanium
SELECTION OF CITATIONS
SEARCH DETAIL